Abstract

A dual-phase Mg-Li-Zn alloy was processed by a severe plastic deformation method which is a method of combination of extrusion and rolling processes and enables production of a very fine grain structure. After this processing, the Mg-Li-Zn alloy exhibited a significantly large fracture elongation of 1400% at 473 K at 0.001 s−1. Moreover, an elongation of more than 600% was observed at 473 K even at high strain rate of 0.01 s−1. Also, at a lower temperature of 423 K, the alloy exhibited a large fracture elongation of 720% at 0.001 s−1. The values of the strain rate sensitivity were approximated to 0.5, which suggested that the superplastic deformation is based on grain boundary sliding. Dislocation glide is identified to be an accommodation mechanism according to the texture evolution during the superplastic deformation. The different trends of the changes of the textures in the α and β phases indicated an inhomogeneity of grain boundary sliding between phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.