Abstract
A nanoscale silver paste containing 30-nm silver particles that can be sintered at 280degC was made for interconnecting semiconductor devices. Sintering of the paste produced a microstructure containing micrometer-size porosity and a relative density of around 80%. Electrical and thermal conductivities of around 2.6times105 (Omegamiddotcm)-1 and 2.4W/K-cm, respectively, were obtained, which are much higher than those of the solder alloys that are currently used for die attachment and/or flip-chip interconnection of power semiconductor devices. The sintered porous silver had an apparent elastic modulus of about 9GPa, which is substantially lower than that of bulk silver, as well as most solder materials. The lower elastic modulus of the porous silver may be beneficial in achieving a more reliable joint between the device and substrate because of increased compliance that can better accommodate stress arising from thermal expansion mismatch
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components and Packaging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.