Abstract
SiO 2 is the most widely used dielectric material but its growth or deposition involves high thermal budgets or suffers from shadowing effects. The low-temperature method presented here (150 °C) for the preparation of SiO2 by thermal atomic layer deposition (ALD) provides perfect uniformity and surface coverage even into nanoscale pores, which may well suit recent demands in nanoelectronics and nanotechnology. The ALD reaction based on 3-aminopropyltriethoxysilane, water, and ozone provides outstanding SiO2 quality and is free of catalysts or corrosive by-products. A variety of optical, structural, and electrical properties are investigated by means of infrared spectroscopy, UV-Vis spectroscopy, secondary ion mass spectrometry, capacitance-voltage and current-voltage measurements, electron spin resonance, Rutherford backscattering, elastic recoil detection analysis, atomic force microscopy, and variable angle spectroscopic ellipsometry. Many features, such as the optical constants (n, k) and optical transmission and surface roughness (1.5 Å), are found to be similar to thermal oxide quality. Rapid thermal annealing (RTA) at 1000 °C is demonstrated to significantly improve certain properties, in particular by reducing the etch rate in hydrofluoric acid, oxide charges, and interface defects. Besides a small amount of OH groups and a few atomic per mille of nitrogen in the oxide remaining from the growth and curable by RTA no impurities could be traced. Altogether, the data point to a first reliable low temperature ALD-growth process for silicon dioxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.