Abstract

High contents of internal β-O-4 linkages in lignin are critical for high-yield production of high-value aromatic monomers by depolymerization. However, it remains great challenge due to lack of suitable protection strategy. In this work, a very effective lignin-first strategy was developed to produce ideal lignin with a super high content of β-O-4 linkages (up to 72 %) from poplar, in which the pretreatment was undertaken at low temperatures of 90–130 °C with the use of AlCl3-catalyzed 1, 4-butanediol solution. 2D-HSQC NMR spectra revealed that lignin β-O-4 linkages were protected from etherification of the OH group by 1, 4-butanediol at the α position of lignin aliphatic chains. Besides, the OH groups at the γ position of lignin was also etherified, leading the formation of a structure of Ph-CH=CHCH2O(CH2)4OH. Interestingly, structure protection facilitated the formation of lignin nanoparticles via self-assembly (<100 nm). In addition, it was observed from pyrolysis results that addition of 1, 4-butanediol remarkably protected the structure of lignin by avoiding condensation, promoting the production of aromatics. The cellulose-rich fraction possessed a high cellulose digestibility of 91.64 % by enzymatic hydrolysis at a cellulase dosage of 15 FPU/g cellulose, approximately 6-fold untreated poplar (15.91 %). This low-temperature lignin-first strategy was of great importance for multi-products biorefining lignocellulose because it leads to the production of both lignin with super high content of β-O-4 linkages for depolymerization and highly digestible cellulose for sugar production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call