Abstract
A plasma technology approach to grow microcrystalline GaP/Si superlattices was explored. The layers of GaP were grown using time modulated plasma enhanced deposition (atomic layer deposition approach), while Si layers were grown using the conventional plasma enhanced chemical vapor deposition mode with high hydrogen dilution. The (3 nm)GaP/(2 nm)Si superlattices were formed on Si and GaP substrates either by the growth of an amorphous GaP/Si multilayer structure followed by thermal annealing at 450–900 °C or by growth of a microcrystalline GaP/Si superlattice at temperatures not exceeding 400 °C. A quantum confinement effect of thin 2 nm Si layers was demonstrated by the appearance of a peak at 500 cm−1 in Raman spectra. The crucial role of hydrogen behavior in Si crystallization and void formation during the annealing of amorphous and growth of microcrystalline GaP/Si structures was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.