Abstract

AbstractMoS2‐based transparent electronics can revolutionize the state‐of‐the‐art display technology. The low‐temperature synthesis of MoS2 below the softening temperature of inexpensive glasses is an essential requirement, although it has remained a long persisting challenge. In this study, plasma‐enhanced chemical vapor deposition is utilized to grow large‐area MoS2 on a regular microscopic glass (area ≈27 cm2). To benefit from uniform MoS2, 7 × 7 arrays of top‐gated transparent (≈93% transparent at 550 nm) thin film transistors (TFTs) with Al2O3 dielectric that can operate between −15 and 15 V are fabricated. Additionally, the performance of TFTs is assessed under irradiation of visible light and estimated static performance parameters, such as photoresponsivity is found to be 27 A W−1 (at λ = 405 nm and an incident power density of 0.42 mW cm−2). The stable and uniform photoresponse of transparent MoS2 TFTs can facilitate the fabrication of transparent image sensors in the field of optoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call