Abstract

We report the low temperature noncollinear magnetic behavior of direct current (DC) sputtered FePt thin films investigated by performing DC magnetization, thermoremanence, magnetic relaxation, and electrical transport measurements down to 1.8 K. The obtained results, interestingly, indicate a transition from ferromagnetic state to a low temperature disordered state where a collective frozen magnetic state with grain moments oriented randomly occurs. The magnetic relaxation and electrical resistivity measurements at low temperature support the spin-glass like phase, which diminishes and finally disappears with an applied field of moderate strength. We interpret the observed low temperature noncollinear magnetic behavior to be due to random freezing of grain moments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.