Abstract

The magnetoresistance of multi-walled carbon nanotubes is studied in the temperature range 4.2–200 K and magnetic fields up to 9 T. The magnetoresistance is negative in the whole temperature range. For small magnetic fields and low temperatures, the dependence of the relative conductivity on the magnetic field is quadratic. However, as the magnetic field increases, it becomes logarithmic, which may be described by weak localization and charge carriers’ interaction models. We show that the addition to conductivity due to the charge carriers’ weak localization significantly exceeds the addition due to the effect of the charge carriers’ interaction. The Fermi energy and the charge carriers’ interaction constant were estimated in terms of these models using the experimental data on the magnetoresistance field and temperature dependences. Also, we determined the exact form for the temperature dependence of the phase relaxation time of the charge carriers’ wave function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.