Abstract

The sp-hybridized carbon network in single- or few-layer γ-graphyne (γ-GY) has a polarized electron distribution, which can be crucial in overcoming biosafety issues. Here, we report the low-temperature synthesis, electronic properties, and amyloid fibril nanostructures of electrostatic few-layer γ-GY. ABC stacked γ-GY is synthesized by layer-by-layer growth on a catalytic copper surface, exhibiting intrinsic p-type semiconducting properties in few-layer γ-GY. Thickness-dependent electronic properties of γ-GY elucidate interlayer interactions by electron doping between electrostatic layers and layer stacking-involved modulation of the band gap. Electrostatic few-layer γ-GY induces high electronic sensitivity and intense interaction with amyloid beta (i.e., Aβ40) peptides assembling into elongated mature Aβ40 fibrils. Two-dimensional biocompatible nanostructures of Aβ40 fibrils/few-layer γ-GY enable excellent cell viability and high neuronal differentiation of living cells without external stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call