Abstract

By combining chemical lattice imaging and vector pattern recognition we determine, as a function of annealing temperature, the composition of individual atomic planes across each HgCdTe/CdTe interface of a multiquantum well stack. The resultant composition profiles, which directly reveal the chemical change across each interface at near atomic resolution, are analyzed in terms of linear and nonlinear diffusion theory, to deduce the interdiffusion coefficient and its activation energy. We find the interdiffusion coefficient to be nonlinear, and a sensitive function of the interface depth beneath the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call