Abstract

Rational design of novel conjugated step-scheme (S-scheme) multijunction heterostructure with synergistic charge channelization, superior light harvesting efficiency and strong redox ability is a pioneering approach to mimic natural photosynthesis process. Herein, a mild cetyltrimethyl ammoniumbromide (CTAB) assisted one pot reflux synthesis route is designed for in situ integration of metal organic framework (MOF)-derived NiFe2O4 with tetragonal-BiVO4 (t-BiVO4) and γ-Bi2MoO6 to prepare NiFe2O4/t-BiVO4/Bi2MoO6 (NFO/BVO/BMO) ternary composites. Morphologically, fine dispersion of NiFe2O4 (NFO) quantum dots over γ-Bi2MoO6 (BMO) and t-BiVO4 (BVO) nanoplates yielded three types of microscopic heterojunctions among BMO-BVO, BVO-NFO and BMO-NFO phases. The ternary composites displayed important physicochemical attributes including high surface area, strong optical absorption, superior charge mobility and higher excited state lifetime which accounted for its improved photocatalytic activity towards ciprofloxacin degradation (>99% in 90 min) and H2 evolution (1.11 mmolh-1g−1, photon conversion efficiency 18.5%). Kinetics study revealed 12–55 fold higher ciprofloxacin photodegradation activity and 31–41 times higher H2 evolution rate for the ternary composite in comparison to the pure semiconductors. A conjugated S-scheme charge transfer mechanism has been deduced from comprehensive band position analysis and radical trapping study to explain the enhanced photocatalytic activity. This work for the first time demonstrated the rational construction of conjugated S-scheme heterostructures with potential application in water remediation and green H2 production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call