Abstract
Geometry optimization and vibrational frequency calculation are carried out at the MP2/6-31G(d,p) level for 35 low-energy isomers of (H2O)n clusters in the size range n=6–21. The heat capacities of the clusters are calculated using quantum statistical theories based on the harmonic approximation. The specific heat capacity increases with the cluster size but the difference diminishes gradually with increasing size. The heat capacities divided by the number of intermolecular vibrational modes are very close for all the clusters. The overall picture of the heat capacity of the clusters is bulk-like and it agrees well with the experimental results of size-selected clusters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.