Abstract

The effect of the doping ratio (B2H6/GeH4) on the structural and electrical properties of boron doped hydrogenated germanium films deposited by the electron cyclotron resonance chemical vapor deposition process has been investigated. By increasing the flow rate of B2H6/GeH4 from 0.025 to 0.125, more boron related radicals are available to desorb hydrogen atoms from the growing surface. This leads to degradation of the structure of the amorphous phase identified by Raman and X-ray diffraction spectroscopy. The incorporation of boron enhances the carrier concentration from 1.65×1019cm−3 to 2.25×1020cm−3 and reduces the resistivity from 0.131Ω·cm to 0.018Ω·cm as measured by Hall measurement. These highly conductive boron-doped hydrogenated Ge films can be useful as low resistance doped layer in devices to achieve better performance. Moreover, we are able to deposit highly conductive boron-doped Ge films at a low growth temperature (180°C) and low hydrogen dilution ratio (H2/GeH4=33), in this study. Such a low temperature process can overcome some problems with high temperature deposition process that limit application in devices. Furthermore, the low hydrogen dilution ratio can minimize an ion bombardment effect on the films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.