Abstract

High-quality ZnO layers are grown on Zn-polar ZnO substrates by surfactant-mediated plasma-assisted molecular-beam epitaxy (P-MBE) using atomic hydrogen as a surfactant. Careful investigation with atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED) reveals that two-dimensional growth is preserved down to 400 °C by irradiating atomic hydrogen during growth, while the low-temperature limit of two-dimensional growth is 600 °C without atomic hydrogen irradiation. The crystal quality of ZnO layers grown at 400 °C by surfactant-mediated MBE is evaluated to be the same as those grown at 600 °C by conventional MBE in terms of X-ray diffraction and photoluminescence properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.