Abstract
In situ weaving an all-carbon graphdiyne coat on a silicon anode is scalably realized under ultralow temperature (25 °C). This economical strategy not only constructs 3D all-carbon mechanical and conductive networks with reasonable voids for the silicon anode at one time but also simultaneously forms a robust interfacial contact among the electrode components. The intractable problems of the disintegrations in the mechanical and conductive networks and the interfacial contact caused by repeated volume variations during cycling are effectively restrained. The as-prepared electrode demostrates the advantages of silicon regarding capacity (4122 mA h g-1 at 0.2 A g-1 ) with robust capacity retention (1503 mA h g-1 ) after 1450 cycles at 2 A g-1 , and a commercial-level areal capacity up to 4.72 mA h cm-2 can be readily approached. Furthermore, this method shows great promises in solving the key problems in other high-energy-density anodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.