Abstract

IntroductionThe electro-actuated shape memory polymer scaffold has gained increasing attentions on the utilization of minimally invasive surgery for bone defect repair, which requires to construct an efficient conductive network to accomplish electrical-to-thermal conversion from conductive fillers to the entire matrix evenly. ObjectivesIn this study, multiwall carbon nanotube (MWCNT) was convective self-assembled on the ZnO tetrapod (t-ZnO) template, where MWCNT was controlled to disperse uniformly and regulated to contact with each other effectively due to the immersion capillary force during the evaporation loss of the convective self-assembly process, leading to an interwoven layer on the t-ZnO surface. MethodsThe prepared t-ZnO@MWCNT assembly was embedded in the poly(L-lactic acid)/thermoplastic polyurethane (PLLA/TPU) scaffold fabricated via selective laser sintering to construct a 3D conductive MWCNT network for improving the electro-actuated shape memory properties. ResultsIt was observed that the interconnected MWCNT formed a 3D conductive network in the matrix without significant aggregation, which boosted the electrical-to-thermal properties of the scaffold, and the scaffold containing t-ZnO@MWCNT assembly possessed better electro-actuated shape memory properties with shape fixity of 98.0% and shape recovery of 98.8%. ConclusionThe scaffold exhibited improved electro-actuated shape memory properties and mechanical properties and the osteogenic inductivity was promoted with the combined effect of t-ZnO and electrical stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.