Abstract

AbstractPyroelectric infrared (IR) detectors based on perovskite oxides are of interest in part because of their lack of need for cooling, which makes them relatively more affordable and operationally simpler than cooled photon detector systems. We are investigating two methods for low-cost growth of perovskite oxide thin films, namely, a bio-inspired, low-temperature synthesis method and a modified industry-standard metalorganic solution deposition (MOSD) method. Subsequent to film synthesis, we utilize direct-write laser phase conversion and micro-electro-mechanical systems (MEMS) fabrication for development of an uncooled IR focal plane array (FPA). Film growth, crystallization and MEMS processes are compatible with monolithic integration of the detector pixels directly onto Si readout integrated circuits (ROICs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.