Abstract

Titanium and titanium nitride thin films were deposited on silica glass and W substrates at a high coating growth rate by plasma-activated reactive evaporation (ARE). The crystal structure, preferred orientation and grain size of the coatings were determined by x-ray diffraction (XRD) technique using Cu-Kα x rays. The analysis of the coating morphology was performed by field-emission scanning electron microscopy (FE-SEM). The composition of the films was analyzed by Auger electron spectroscopy (AES) and electron-probe microanalysis (EPMA). The titanium and titanium nitride condensates were collected on a carbon-coated collodion film then characterized by transmission electron microscopy (TEM) in order to study the structures of the deposits at very short deposition times. The resistivity of the films was measured by using the four-point-probe method. The titanium coatings were found to consist of very fine particles (40nm in grain size) and to exhibit a strong (002) texture. The titanium nitride coatings were substoichiometric (TiNx,x<1), with an oxygen content ranging from 7 to 15 at. % depending on the deposition conditions. The deposits were found to exhibit a (111) preferred orientation. This behavior became stronger with coating thickness. In spite of the presence of oxygen, all the TiNx coatings obtained at low temperature and a high growth rate in this work exhibited a rather high electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.