Abstract

The low-temperature electron mobility in \ensuremath{\delta}-doped GaAs is calculated by using the Boltzmann equation and the relaxation-time approximation. It is assumed that the electrons are scattered from ionized impurities. Screening of charged impurities by electrons occupying several subbands is described with the help of (i) the random-phase approximation, (ii) the Thomas-Fermi method, and (iii) the bulk dielectric constant only. Among those methods mentioned above, the random-phase approximation has proved quite successful in studying the screening while the other two methods are inadequate. The mobility exhibits a drop when the excited subbands become occupied. It is shown, however, that as a consequence of the parity of the subband wave functions, the drop in the mobility when the Fermi level coincides with the bottom of the first excited subband is negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.