Abstract
We study from the point of view of quantum logic the properties of the collective oscillations of two Rydberg atoms in two harmonic traps. The difference in the frequency of two normal modes of motion expands with the difference in the mass of the two atoms. The probability of excitation of the motional quanta due to the strong dipole-dipole interaction can be made to be sufficiently small. Based on the normal modes of motion we present a scheme for quantum state transfer which is useful for quantum information process and for precision spectroscopy of atoms that lack suitable transitions for efficient laser cooling, internal state preparation, and detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.