Abstract
The photocarrier dynamics in molecular beam epitaxy (MBE)-grown single- (SLQD) and multi-layered (MLQD) InAs/GaAs quantum dots were studied. Photoluminescence (PL) spectroscopy has shown that the MLQD has more uniform QD size distribution as compared to the bimodal SLQD. Correlation between PL and THz-TDS has shown that photocarrier transport is more favored in the MLQD owing to this uniform QD size distribution, resulting to higher THz emission. The THz emission from the QD samples were found to be proportional to temperature. A drift-related photocarrier transport mechanism is proposed, wherein photocarriers generated in the QDs are accelerated by an interface electric field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have