Abstract
Nickel(II) 1-dimethylamino-2-methyl-2-butoxide (Ni(dmamb)2) with water and hydrogen sulfide as oxygen and sulfur sources was employed in atomic layer deposition (ALD) of nickel oxide (NiO) and nickel sulfide (NiS) thin films. Both NiO and NiS thin films demonstrate temperature-independent growth rates per cycle of 0.128 nm/cycle and 0.0765 nm/cycle, at 130–150 °C and 80–160 °C, respectively. Comparison of two nickel-based thin film materials demonstrates dissimilar deposition features depending on the reactivity of the Ni precursor, i.e., Ni(dmamb)2 with anion sources provided by the water and hydrogen sulfide reactants. Difference in reactivity observed for NiO and NiS ALD processes is further investigated by density functional theory (DFT) simulations of surface reactions, which indicated that H2S demonstrate higher reactivity with surface-adsorbed Ni precursor than H2O. The material properties of ALD NiO and NiS thin films including stoichiometry, crystallinity, band structure, and electronic properties were analyzed by multiple experimental techniques, showing potential of ALD NiS as electrode or catalyst for energy-oriented devices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have