Abstract
We fabricated nanocrystalline Ge films using radio-frequency (RF) magnetron plasma sputtering deposition under a high Ar-gas pressure. The Ge nanograins changed from amorphous to crystalline when the distance between the Ge sputtering target and the substrate was decreased to 5 mm and the RF input power was 11.8 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> (60 W), where the deposition rate was as high as 660 nm/min. In addition, the size of the nanocrystalline grains increased from 100 to 307 nm when the RF input power for plasma production was increased from 11.8 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> (60 W) to 17.7 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> (90 W). In the developed narrow-gap plasma process at sub-Torr pressures, nanocrystalline Ge films were successfully fabricated on Cu substrates at low temperatures, without the substrate being heated. However, when annealing was conducted under an N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> atmosphere, which is the conventional method to induce solid-phase crystallization, the amorphous Ge layer on a Cu substrate changed to a Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Ge crystal layer through interdiffusion of Ge and Cu atoms at 400–500 °C.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have