Abstract

Despite the fact that there are already a number of solid-contact-based ion-selective electrodes designed for atrazine detection, our ground-breaking contribution lies in introducing the first-ever atrazine potentioselectrode, enabling the ultra-sensitive detection of atrazine at nanomolar levels. Solid-contact ion-selective electrodes can offer advantages, such as improved stability, reproducibility, sensitivity, and selectivity compared to their liquid-contact counterparts. Here, a biomimetic potentiometric sensor for Atrazine was developed using economic, light weight, and flexible carbon cloth as solid-contact material. Our methodology entails the synthesis of a molecularly imprinted polymer (MIP) through straightforward precipitation polymerization, showcasing a streamlined and efficient method for creating highly specific molecular recognition elements. The validation of template removal is confirmed via meticulous analysis employing EDX and FTIR techniques, ensuring the efficacy of our methodology. The resulting sensing membrane are casted by dispersing the MIP in 2-nitrophenyl octyl ether plasticizer and embedding it within a PVC matrix containing sodium tetraphenyl borate as a lipophilic additive. The developed sensor responds to atrazine in the pH range of 2.8-3.3 over a wide concentration range of 1 × 10-8M to 1 × 10-5M & 1 × 10-5M to 1 × 10-1M with respective slopes of 29.2 mv & 58.7mV and a limit of detection of 1 × 10-9M. An impressive feature of this sensor lies in its swift response time, registering a rapid reaction within a mere 10s. Emphasize the sensor's commendable attributes of reproducibility, selectivity, and sensitivity underscoring its successful application in field monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.