Abstract
Full-thickness oral mucosal defects are accompanied by significant blood loss and frequent infections. Instead of conventional therapies that separate hemostasis and anti-inflammation in steps, emerging hydrogels can integrate multiple functions for the successive process after defect including hemostasis/inflammatory phase, proliferative phase, and remodeling phase. However, these functions can be easily compromised by rapid swelling and degradation of hydrogels in wet oral environment. Herein, a low-swelling adhesive hydrogel with rapid hemostasis and potent anti-inflammatory capability was developed using a dual cross-linking strategy as well as a safe and facile fabrication method. It was double cross-linked hydrogel consisting of gelatin methacrylate (GelMA), nanoclay, and tannic acid (TA) (referred to as GNT). GNT hydrogel exhibited low-swelling (one-eighth of that of GelMA), excellent stretchability (211.86%), and good adhesive properties (5 times the adhesive strength of GelMA). Physicochemical characterization illuminated the close interactions among the three components. A systematic investigation of the therapeutic effects of GNT hydrogels was performed. In vitro and in vivo experimental results demonstrated the potent hemostatic property and excellent antibacterial and anti-inflammatory effects of GNT hydrogels. The RNA sequencing analysis results for rat full-thickness oral mucosal samples showed that GNT reduced inflammation levels by down-regulating the expression of multiple inflammation-related pathways, including TNF and IL-17 pathways. It also enhanced the expression levels of tissue regeneration-related genes and thus accelerated defective mucosal repair. More importantly, the therapeutic effects of GNT were superior to those of a commercial oral tissue repair membrane when applied for full-thickness oral mucosal defect repair in rabbits. In summary, the prepared low-swelling adhesive GNT hydrogel with rapid hemostasis and potent anti-inflammatory is a promising therapy for full-thickness mucosal defect in the moist and dynamic oral environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.