Abstract
ObjectiveWe aimed to study (1) to what extent the influence of low sun exposure on multiple sclerosis (MS) risk is mediated by low vitamin D levels; (2) whether low sun exposure or vitamin D deficiency act synergistically with HLA-DRB1*15:01 and absence of HLA-A*02:01.MethodsWe used two population-based case–control studies (7069 cases, 6632 matched controls). Subjects with different HLA alleles, sun exposure habits and vitamin D status were compared regarding MS risk, by calculating odds ratios (OR) with 95% confidence intervals (CI) employing logistic regression. Mediation analysis was used to identify the potential mediation effect of vitamin D on the relationship between low sun exposure and MS risk.ResultsLow sun exposure increased MS risk directly as well as indirectly, by affecting vitamin D status. The direct effect, expressed as OR, was 1.26 (95% CI 1.04–1.45) and the indirect effect, mediated by vitamin D deficiency, was 1.10 (95% CI 1.02–1.23). Of the total effect, nearly 30% was mediated by vitamin D deficiency. There was a significant interaction between low sun exposure and vitamin D deficiency (attributable proportion due to interaction 0.3, 95% CI 0.04–0.5) accounting for about 12% of the total effect. Further, both factors interacted with HLA-DRB1*15:01 to increase MS risk.InterpretationOur findings indicate that low sun exposure acts both directly on MS risk as well as indirectly, by leading to low vitamin D levels. The protective effect of sun exposure thus seems to involve both vitamin D and non-vitamin D pathways, which is of relevance for prevention, in particular for those with a genetic susceptibility to MS.
Highlights
multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system with underlying genetic and environmental factors
Nearly 30% was mediated by vitamin D deficiency
Our findings indicate that low sun exposure may increase MS risk directly as well as indirectly, by affecting vitamin D status
Summary
MS is a chronic immune-mediated disease of the central nervous system with underlying genetic and environmental factors. Several reviews have described consistent evidence of an association between both low sun exposure and vitamin D deficiency and increased MS risk [3, 4]. Interactions have been demonstrated between several lifestyle and environmental risk factors for MS and presence of the strongest genetic risk factor, the HLA-DRB1*15:01 allele [5,6,7,8]. A synergistic effect between vitamin D and DRB1*15:01 has been suggested [9], whereas we found no such interaction in a previous study comprising a relatively small case–control sample [10]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have