Abstract

The early stages of the formation of dislocation microstructures in low-strain fatigue are analysed, using three-dimensional discrete dislocation dynamics modelling. Simulations under various conditions of loading amplitude and grain size have been performed. Both the dislocation microstructures and the associated mechanical behaviour are accurately reproduced in single-slip as well as in double-slip loading conditions. The microstructures thus obtained are analysed quantitatively, in terms of number of slip bands per grain, band thickness and band spacing. The simulations show the crucial role of cross-slip both for the initial spreading of strain inside the grain and for the subsequent strain localization in the form of slip bands. A complete and detailed scheme for the persistent slip band formation is proposed, from the observation of the numerical dislocation arrangements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.