Abstract

Perioperative neurocognitive disorder (PND) is a postsurgical complication associated with neuroinflammation and impaired hippocampal neurogenesis, in which brain-derived neurotrophic factor (BDNF) plays a key role. Sarcopenia refers to age-related muscle loss that causes cognitive decline, muscle atrophy, and postoperative delirium. Rats with tail suspension (TS) were used to represent a low-activity model, which involves decreased hind limb function by TS. This hind limb unloading by TS can induce sarcopenia in 2 weeks. However, the relationship between PND and muscle atrophy is unclear. In this experiment, we investigated whether preoperative muscle atrophy induced by TS would affect neurogenesis and accelerate PND in rats. Sixty 21-week-old rats were assigned to 4 groups: the TS group, the TS with surgery (TS + S) group, the control group, and the control with surgery (control + S) group. After the abdominal manipulation under 3% sevoflurane anesthesia, cognitive function was assessed using the Morris water maze test and a fear-conditioning test. Neurogenesis was evaluated by checking BDNF secretion and immunohistochemical staining in the hippocampus. The TS + S group showed impaired swimming latency (difference of means = 12.4 versus control + S; 95% confidence interval [CI], 2.0-22.7; P = .016) (difference of means = 15.2 versus TS; 95% CI, 0.4-30.1; P = .043) and path length (difference of means = 147.8 versus control + S; 95% CI, 20.7-274.9; P = .020) in the maze test and cued fear memory (difference of means = -26.0 versus TS; 95% CI, -46.4 to -5.6; P = .006) (difference of means = -22.3 versus control + S; 95% CI, -42.7 to -1.9; P = .026) in the fear-conditioning test. The postoperative levels of BDNF in the TS + S and TS groups were reduced compared with the other groups (P = .002). The number of neural precursors in the dentate gyrus was significantly lower in the TS + S group (P < .001). We observed that preoperative hind limb muscle atrophy, indicated by TS, was associated with an increased occurrence of PND through the reduction in BDNF and neurogenesis after abdominal surgery in young adult rats. Therefore, we concluded that preoperative low skeletal muscle mass can induce PND due to impaired postoperative neurogenesis. Our findings might indicate that low-cost perioperative interventions, such as preoperative exercise, is beneficial to preventing PND.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.