Abstract
The performance of differential pulse-code modulation and random codes is evaluated experimentally for a range of autoregressive sources, including Gaussian and Laplacian sources of orders <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1, 2</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</tex> encoded at rates <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1, 2</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">7</tex> . Correlations are typical of those encountered in speech and images. Results show that the gain from a fixed moderate degree of code searching increases as the rate decreases, and increases consistently with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1 /D_{o}</tex> , where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D_{o}</tex> is the Berger-Gray critical distortion. Laplacian and Gaussian sources behave similarly. Random codes perform better than DPCM codes for lightly correlated Laplacian sources but are otherwise worse.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have