Abstract

Interventional MRI (i-MRI) is crucial for MR image-guided therapy. Current image reconstruction methods for dynamic MR imaging are mostly retrospective that may not be suitable for real-time i-MRI. Therefore, an algorithm to reconstruct images without a temporal pattern as in dynamic imaging is needed for i-MRI. We proposed a low-rank and sparsity (LS) decomposition algorithm with framelet transform to reconstruct the interventional feature with a high temporal resolution. Different from the existing LS-based algorithms, the spatial sparsity of both the low-rank and sparsity components was used. We also used a primal dual fixed point (PDFP) method for optimization of the objective function to avoid solving sub-problems. Intervention experiments with gelatin and brain phantoms were carried out for validation. The LS decomposition with framelet transform and PDFP could provide the best reconstruction performance compared with those without. Satisfying reconstruction results were obtained with only 10 radial spokes for a temporal resolution of 60 ms. The proposed method has the potential for i-MRI in many different application scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call