Abstract

In this study the metabolism of 293SF cells grown in serum-free and low-protein medium was analyzed. This cell line is known for its ability to replicate recombinant adenovirus, mainly used in gene therapy applications. A complete model composed of the main glycolytic, glutaminolytic, and amino acids pathways, as well as the internalization fluxes of certain compounds into the mitochondria, is used for metabolic flux calculations. The pentose-phosphate cycle is also added to the biochemical reactions set and was independently measured with labeled 14C-glucose. Different feeding strategies in two different media were analyzed with the model, and the theoretical ATP production was also calculated. The two media were similar in their glucose and amino acid composition, but one contained BSA at 1g/L whereas the other had a very low protein content. Use of low-protein medium resulted in up to fourfold higher adenoviral vector production. In this medium, glucose utilization was more efficient, as it entered the TCA cycle more efficiently. Also, lower glutamine and amino acids consumption were observed as well as lower lactate and ammonia production. This increased TCA activity led to a twofold higher ATP production in the low-protein medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.