Abstract

Abstract Recently, Wafer Level Chip Scale Package (WLCSP) Package is being rapidly adopted in Internet of Things (IoT) and consumer mobile electronics due to its low profile, small form factor and relatively easy assembly process. WLCSP with large die size becomes the trend in fulfilling high performance product demands. However, the solder joint reliability performances of WLCSP is the key challenge and becomes critical as increasing die size, especially the size is larger than 6 × 6 mm2. There is also growing interest in low profile WLCSP packages to less than 300 microns, especially when they are placed in a limited space inside IoT devices. Thin wafers are fragile and must be supported over their full dimensions to prevent cracking and breakage. An increasingly popular approach to thin wafer handling involves grinding and taping thin wafers with in-line machines. A specific carry tape have been also developed for transferring thin wafers after thinning. In this paper, WLCSP board level reliability for both large die size and low profile was studied, a test vehicle used for the large WLCSP package testing has 350um ball pitch and fully populated array. In addition to board level reliability test simulation and data collection, processing challenges were discussed, as well as processing solutions for thin wafer handling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.