Abstract
The influence of low pressure on the surface potential decay of gamma irradiated polymer films of polypropylene (PP) and poly(ethylene terephtalate) (PET) were studied. Polymer film samples were subjected to integral irradiation doses (Ey = 1.25 MeV, 60Co source) of 5 kGy and 25 kGy accumulated in air at a dose rate of 0.26 Mrad/h. After irradiation, the samples were charged in a corona discharge by means of a corona triode system for 1 minute under room conditions. Positive or negative 5 kV voltages were applied to the corona electrode. Four different voltages of the same polarity as that of the corona electrode were applied to the grid. The electret surface potential V0 was measured by the method of the vibrating electrode with compensation. After charging the electrets were placed into a vacuum chamber as the pressure was reduced step by step in the range of 1000 mbar to 0.1 mbar. At each step the samples were stored for 1 minute and the surface potential V was measured again. Then values of the normalized surface potential V/V0 were calculated. Low pressure dependences of the normalized surface potential for positively and negatively charged PP and PET films were presented. It was established that the low pressure led to the surface potential decay of the electrets. The influence of low pressure was analyzed by the equation that describes processes of desorption from the electret surface accompanied with surface diffusion. The experimental results obtained show a significant change in the electret behaviour of the polimer films after gamma irradiation and storage at different low pressure. It was established that the surface potential decay depends on the corona polarity, gamma irradiation and the values of low pressure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have