Abstract

In this paper, a new leading-zero counter (or detector) is presented. New boolean relations for the bits of the leading-zero count are derived that allow their computation to be performed using standard carry-lookahead techniques. Using the proposed approach various design choices can be explored and different circuit topologies can be derived for the design of the leading-zero counting unit. The new circuits can be efficiently implemented either in static or in dynamic logic and require significantly less energy per operation compared to the already known architectures. The integration of the proposed leading-zero counter with the leading-zero anticipation logic is analyzed and the most efficient combination is identified. Finally, a simple yet efficient technique for handling the error of the leading-zero anticipation logic is also presented. The energy-delay behavior of the proposed circuits has been investigated using static and dynamic CMOS implementations in a 130-nm CMOS technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.