Abstract

PurposeThe purpose of this paper is to design a low power clock gating technique using Galeor approach by assimilated with replica path pulse triggered flip flop (RP-PTFF).Design/methodology/approachIn the present scenario, the inclination of battery for portable devices has been increasing tremendously. Therefore, battery life has become an essential element for portable devices. To increase the battery life of portable devices such as communication devices, these have to be made with low power requirements. Hence, power consumption is one of the main issues in CMOS design. To reap a low-power battery with optimum delay constraints, a new methodology is proposed by using the advantages of a low leakage GALEOR approach. By integrating the proposed GALEOR technique with conventional PTFFs, a reduction in power consumption is achieved.FindingsThe design was implemented in mentor graphics EDA tools with 130 nm technology, and the proposed technique is compared with existing conventional PTFFs in terms of power consumption. The average power consumed by the proposed technique (RP-PTFF clock gating with the GALEOR technique) is reduced to 47 per cent compared to conventional PTFF for 100 per cent switching activity.Originality/valueThe study demonstrates that RP-PTFF with clock gating using the GALEOR approach is a design that is superior to the conventional PTFFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.