Abstract
In a very large scale integration (VLSI) of integrated circuit (IC) nowadays, digital circuit with low power design is the target of the IC designer. This is to prolong the battery life of the circuit especially if it is meant for wearable devices. In most of the digital circuits, counters are used widely and these counters consumed a lot of power. Therefore in this project the reduction of power consumption of Johnson Counter by using clock gating technique is presented. Johnson Counter is used extensively to generate particular data and shift the data synchronously as per the output sequence of the counter. To ensure the power consumption is reduced, a clock gating technique is incorporated to the Johnson Counter. This counter is implemented in Cadence software using 130 nm Complementary Metal Oxide Semiconductor (CMOS) technology. The design is observed by comparing the design of a 4 bit Johnson Counter using clock gating technique and another 4 bit Johnson Counter without using the clock gating technique. The result shows the power consumption of the Johnson Counter using the clock gating technique is 21.22 μW while the regular Johnson Counter consumed 67.09 μW. Thus the power consumption is reduced by about 68.3% when a clock gating technique is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.