Abstract

To meet the specifications of future radar and communication systems we developed a low phase noise microwave oscillator. This feedback oscillator consists of a commercial MESFET-amplifier at room temperature and a LaAlO/sub 3/ dielectric resonator with high temperature superconducting (HTS) shielding at 63 K. The resonator operating at a resonance frequency of 5.6 GHz showed unloaded quality factors in the 10/sup 5/ to 10/sup 6/ range. By means of a strong resonator coupling (|S/sub 21/|=6 dB) and an amplifier gain of 20 dB we obtained an output power of +15 dBm. The phase noise L(f/sub m/) of the oscillator was below the detection limit for offset frequencies beyond 10 kHz. For offset frequencies below 5 kHz measurements revealed perfect L(f/sub m/)/spl prop/f/sub m//sup .3/-behaviour according to the Leeson model. The phase noise was -110 dBc/Hz at 1 kHz offset and -130 dBc/Hz at 10 kHz. This phase noise performance is superior to state of the art SAW- or quartz oscillators for f/sub m/>10 kHz. To further reduce the phase noise performance close to the carrier we investigated the implementation of a phase locked loop (PLL). The long term temperature stability of the oscillator frequency can be enhanced by introducing a central cylinder made from rutile (TiO/sub 2/). We present numerical and experimental results on this compensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call