Abstract
Connexin43 (Cx43) is involved in bone development, but its role in adult bone homeostasis remains unknown. To overcome the postnatal lethality of Cx43 null mutation, we generated mice with selective osteoblast ablation of Cx43, obtained using a Cx43fl allele and a 2.3-kb fragment of the alpha1(I) collagen promoter to drive Cre in osteoblasts (ColCre). Conditionally osteoblast-deleted ColCre;Cx43-/fl mice show no malformations at birth, but develop low peak bone mass and remain osteopenic with age, exhibiting reduced bone formation and defective osteoblast function. By both radiodensitometry and histology, bone mineral content increased rapidly and progressively in adult Cx43+/fl mice after subcutaneous injection of parathyroid hormone (PTH), an effect significantly attenuated in ColCre;Cx43-/fl mice, with Cx43-/fl exhibiting an intermediate response. Attenuation of PTH anabolic action was associated with failure to increase mineral apposition rate in response to PTH in ColCre;Cx43-/fl, despite an increased osteoblast number, suggesting a functional defect in Cx43-deficient bone-forming cells. In conclusion, lack of Cx43 in osteoblasts leads to suboptimal acquisition of peak bone mass, and hinders the bone anabolic effect of PTH. Cx43 represents a potential target for modulation of bone anabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.