Abstract
Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in the Atlantic OMZ are relatively high and low, respectively. This study, however, demonstrates that recently discovered low oxygen eddies in the eastern tropical North Atlantic (ETNA) can produce N2O concentrations much higher (up to 115 nmol L−1) than those previously reported for the Atlantic Ocean, and which are within the range of the highest concentrations found in the open-ocean OMZs of the Pacific and Indian Oceans. N2O isotope and isotopomer signatures, as well as molecular genetic results, also point towards a major shift in the N2O cycling pathway in the core of the low oxygen eddy discussed here, and we report the first evidence for potential N2O cycling via the denitrification pathway in the open Atlantic Ocean. Finally, we consider the implications of low oxygen eddies for bulk, upper water column N2O at the regional scale, and point out the possible need for a reevaluation of how we view N2O cycling in the ETNA.
Highlights
As accomplished using 4 certified standard gases[51] that ranged widely in these values and encompassed those reported here
The present study has demonstrated for the first time that low Dissolved oxygen (DO) eddies in the eastern tropical North Atlantic can cause significant shifts in the N2O cycling dynamics which are typically found in this region
In the case of this study, our results showed that at DO concentrations
Summary
As accomplished using 4 certified standard gases (supplied by Joachim Mohn)[51] that ranged widely in these values and encompassed those reported here. Calibration for N2O site-specific isotopomer composition needs to account for instrument specific ‘scrambling’ in the mass spectrometer ion source between 15N14NO and 14N15NO50. The magnitude is on the order of 10% and is manifested as changes in the 30/44 ratio from the value expected in the absence of scrambling. In order to account for this, we took advantage of new standard materials that vary widely in isotopomer composition[51] to perform an empirical curve-fitting calibration. Based on measurements of duplicate samples from each sampling depth, the errors associated with our isotope measurements were ±0.07, 0.17, 0.36 and 0.18‰ for δ15Nbulk-N2O, δ15Nα-N2O, δ15Nβ-N2O and δ18O-N2O, respectivel
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have