Abstract

Accurate modeling of static load distribution of balls is very useful for proper design and sizing of ball screw mechanisms (BSMs); it is also a starting point in modeling the dynamics, e.g., friction behavior, of BSMs. Often, it is preferable to determine load distribution using low order models, as opposed to computationally unwieldy high order finite element (FE) models. However, existing low order static load distribution models for BSMs are inaccurate because they ignore the lateral (bending) deformations of screw/nut and do not adequately consider geometric errors, both of which significantly influence load distribution. This paper presents a low order static load distribution model for BSMs that incorporates lateral deformation and geometric error effects. The ball and groove surfaces of BSMs, including geometric errors, are described mathematically and used to establish a ball-to-groove contact model based on Hertzian contact theory. Effects of axial, torsional, and lateral deformations are incorporated into the contact model by representing the nut as a rigid body and the screw as beam FEs connected by a newly derived ball stiffness matrix which considers geometric errors. Benchmarked against a high order FE model in case studies, the proposed model is shown to be accurate in predicting static load distribution, while requiring much less computational time. Its ease-of-use and versatility for evaluating effects of sundry geometric errors, e.g., pitch errors and ball diameter variation, on static load distribution are also demonstrated. It is thus suitable for parametric studies and optimal design of BSMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call