Abstract

We demonstrate the excellent spectral properties of a diode laser setup that combines good tunability with superb short-term frequency stability and controllability. It is based on merging two concepts, the diode laser with resonant optical feedback and the grating stabilized diode laser. To characterize the short-term performance we beat two essentially identical diode lasers and find a short-term linewidth of ~11 kHz. Phase locking between these lasers is achieved with a servo bandwidth as small as 46 kHz, although an analog phase detector is used that requires subradian residual phase error. Despite small phase error detection range and small servo bandwidth, cycle-slip-free phase locking is accomplished for typically many 10 min, and the optical power is essentially contained in a spectral window of less than 20 mHz relative to the optical reference. Due to the excellent performance this laser concept is well suited for atomic or molecular coherence experiments, which require phase locking of different lasers to each other, and as part of a flywheel for optical clocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.