Abstract

Sedentary behavior (SB) has both movement and postural components, but most SB research has only assessed low movement, especially in children. The purpose of this study was to compare estimates and health associations of SB when derived from a standard accelerometer cut-point, a novel sitting detection technique (CNN Hip Accelerometer Posture for Children; CHAP-Child), and both combined. Data were from the International Study of Childhood Obesity, Lifestyle, and the Environment (ISCOLE). Participants were 6103 children (mean ± SD age 10.4 ± 0.56 years) from 12 countries who wore an ActiGraph GT3X+ accelerometer on the right hip for approximately one week. We calculated SB time, mean SB bout duration, and SB breaks using a cut-point (SBmovement), CHAP-Child (SBposture), and both methods combined (SBcombined). Mixed effects regression was used to test associations of SB variables with pediatric obesity variables (waist circumference, body fat percentage, and body mass index z-score). After adjusting for MVPA, SBposture showed several significant obesity associations favoring lower mean SB bout duration (b = 0.251-0.449; all p < 0.001) and higher SB breaks (b = -0.005--0.052; all p < 0.001). Lower total SB was unexpectedly related to greater obesity (b = -0.077--0.649; p from <0.001-0.02). For mean SB bout duration and SB breaks, more associations were observed for SBposture (n = 5) than for SBmovement (n = 3) or SBcombined (n = 1), and tended to have larger magnitude as well. Using traditional measures of low movement as a surrogate for SB may lead to underestimated or undetected adverse associations between SB and obesity. CHAP-Child allows assessment of sitting posture using hip-worn accelerometers. Ongoing work is needed to understand how low movement and posture are related to one another, as well as their potential health implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.