Abstract
Questions have been raised about potentially negative effects of antenatal folic acid use in populations with a high prevalence of vitamin B-12 deficiency. Our objective was to examine the association between maternal folate and vitamin B-12 status in pregnancy on offspring insulin resistance and examine whether the effects of maternal micronutrient supplementation varied by baseline maternal folate and/or vitamin B-12 status. Pregnant women were cluster randomized to receive daily supplements containing vitamin A alone or with folic acid, folic acid+iron, folic acid+iron+zinc, or a multiple micronutrient. In a subsample (n = 1132), micronutrient status biomarkers were analyzed at baseline and late pregnancy. Children born to the women who participated in the trial were visited at 6–8 y of age. Fasting plasma glucose and insulin were used to estimate insulin resistance using the homeostasis model assessment (HOMA-IR). Children whose mothers were deficient in vitamin B-12 (<148 pmol/L, 27%) during early pregnancy had a 26.7% increase in HOMA-IR (P = 0.02), but there was no association with maternal folate status. Among children born to women who were vitamin B-12 deficient at baseline, the percent difference in HOMA-IR compared to the control group was 15.1% (95% CI: −35.9, 106.4), 4.9% (−41.6, 88.5), 3.3% (−38.4, 73.5), and 18.1% (−29.0, 96.7) in the folic acid, folic acid-iron, folic acid-iron-zinc, and multiple micronutrient supplementation groups, respectively, none of which were significant. Maternal vitamin B-12 deficiency is associated with an elevated risk of insulin resistance, but supplementation with folic acid or other micronutrients led to no significant change in insulin resistance in school-aged offspring.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have