Abstract

We propose a porous polymer terahertz fiber with a core composed of a hexagonal array of subwavelength air holes. Numerical simulations show that the larger part of guided power propagates inside the air holes within the fiber core, resulting in suppression of the bulk absorption losses of the core material by a factor of ∼10–20. Confinement of terahertz power in the subwavelength holes greatly reduces effective refractive index of the guided mode but not as much as to considerably increase modal radiation losses due to bending. As a result, tight bends of several centimeter bending radii can be tolerated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.