Abstract
In this work we would like to present the results of low loss coupling of a novel soft glass fiber for super continuum generation with standard single mode fiber by a filament splicing method. For our experiment we used an all solid soft glass microstructured fiber (MSF) made from a composition of F2 lead-silicate glass and NC21 borosilicate glass. The structure and material properties of the fiber were optimized to achieve all normal dispersion (ND) flattened around 1560 nm, which offers two general advantages for supercontinuum generation. The ND supercontinuum avoids soliton dynamics, hence it is less sensitive to pump laser shot noise and has larger degree of coherence than supercontinuum in the anomalous dispersion range. Furthermore flattening around 1560 nm indicates optimal supercontinuum pump wavelength, which is readily available from erbium doped femtosecond fiber lasers. Using Vytran splicing station (GPX3400) we were able to achieve repeatable splice loss between a standard fused-silica single mode fiber (SMF28) and the low-melting-temperature soft glass MSF as low as 2.12 dB @1310 nm and 1.94 dB @ 1550 nm. The developed very low loss splicing technology together with the above mentioned all solid soft glass MSF advantages give very promising perspectives for commercial applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have