Abstract

This paper describes fabrication, characterization and simulation of low-loss coplanar waveguide (CPW) interconnects on low-resistivity silicon substrate. The fabrication of CPWs is low-temperature (below 250/spl deg/C) and incorporates a spin-on low-k dielectric benzocyclobutene (BCB) and self-aligned electroplating of copper. The performance of CPWs is evaluated by high-frequency characterization and EM simulation. CPWs with different line width (W) and line spacing (S) are investigated and compared. Using a BCB layer as thick as 20 /spl mu/m, CPW fabricated on a low-resistivity silicon substrate exhibits an insertion loss of 3 dB/cm at 30 GHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.