Abstract

The scaling of transistor sizes has resulted in dramatic increase of leakage currents. The sub-threshold and gate leakages have now become a major contributor to total power dissipations. This paper presents two flip-flops based on dual-threshold CMOS and multiple leakage reduction techniques to reduce their leakage dissipations. In the DT-TG FF (Dual-Threshold Transmission Gate Flip-Flop), some transistors on non-critical paths use high-threshold devices to reduce their leakage currents, while the other transistors on critical paths use low-threshold devices to maintain performance. The MLRT FF (Multiple Leakage Reduction Technique Flip-Flop) uses P-type CMOS techniques, MTCMOS (Multi-Threshold CMOS) power-gating and dual-threshold technique to reduce both sub-threshold and gate leakage dissipations. Taken as an example, a practical sequential system realized with the two low-leakage flip-flops is demonstrated using a mode-5 × 5 × 5 counter. The simulation results show that the two flip-flops achieve considerable leakage reductions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call