Abstract
This work presents a characterization of a low-cost, low-latency Visible Light Communication (VLC) prototype for infrastructure-to-vehicle (I2V) communication for future Intelligent Transportation Systems (ITS). The system consists of a regular traffic light as a transmitter (the red light is modulated with the information), and a photodetector as a receiver. The latter is equipped with low-cost Fresnel lenses as condensers, namely, 1 ′ ′ Fresnel and 2 ′ ′ Fresnel, to increase the optical gain of the system at the receiver. The system is capable of Active Decode and Relay (ADR) of information to further incoming units. The experimental characterization of amplitude and Packet Error Rate (PER) for the proposed system has been performed for distances up to 50 m. The results show that by incorporating the 2 ′ ′ Fresnel lens in the photodetector, an error free ( PER ≤ 10 − 5 ) I2V communication is established up to 50 m. Furthermore, the prototype can be used for both broadcast and beaconing transmission modes. This low-cost VLC-based system could offer sub-millisecond latency in the full ADR process for distances up to 36 m, which makes it suitable for integration in Cellular-V2X (C-V2X) and 5G platforms.
Highlights
The capabilities of existing Intelligent Transportation Systems (ITS) can significantly be improved by enabling advanced low-latency infrastructure to vehicular (I2V), vehicular to vehicular (V2V) and vehicular to infrastructure (V2I) communications, which could offer active road safety applications by assisting drivers in critical moments
In order to enable fast and robust vehicular communications several technologies and techniques [1] have been proposed and tested, but most efforts focus on dedicated short range communications (DSRC) and IEEE standard 802.11p, which forms the regulations for wireless access in vehicular environments (WAVE) [2,3]
Experiments are performed by placing the RX stage in various positions in front of a traffic light, for two system configurations; (a) the photodetector optical axis always aims to the traffic light red lamp, known as Optimal system configuration; (b) the photodetector axis is parallel to the floor, known as Flat system configuration (See Figure 1)
Summary
The capabilities of existing Intelligent Transportation Systems (ITS) can significantly be improved by enabling advanced low-latency infrastructure to vehicular (I2V), vehicular to vehicular (V2V) and vehicular to infrastructure (V2I) communications, which could offer active road safety applications by assisting drivers in critical moments. For safety-critical applications, vehicles must be equipped with ultra-reliable and ultra-low latency communication systems to share information with infrastructures and other vehicles for triggering appropriate actions, for example, through their electronic driving assistance systems In this context, LED-based visible light communication (VLC) has recently drawn huge attention from the communications community due to exciting features which are lacking in common RF-based communication systems, such as, the high degree of integrability in existing infrastructures and the intrinsic directionality of the VLC channel. Fresnel lenses offer good optical performances at a competitive price with respect to standard molded glass aspheric lenses, featuring reduced thickness and weight Their usage in receiver stages has been reported in former works, reporting attainable distances of few meters at 1kbps in a laboratory prototype [25], whilst other works focused on design methods for Fresnel lenses in indoor VLC applications [26].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.