Abstract
Mobile Edge Computing (MEC) consists of deploying computing resources (CPU, storage) at the edge of mobile networks; typically near or with eNodeBs. Besides easing the deployment of applications and services requiring low access to the remote server, such as Virtual Reality and Vehicular IoT, MEC will enable the development of context-aware and context-optimized applications, thanks to the Radio API (e.g. information on user channel quality) exposed by eNodeBs. Although ETSI is defining the architecture specifications, solutions to integrate MEC to the current 3GPP architecture are still open. In this paper, we fill this gap by proposing and implementing a Software Defined Networking (SDN)-based MEC framework, compliant with both ETSI and 3GPP architectures. It provides the required data-plane flexibility and programmability, which can on-the-fly improve the latency as a function of the network deployment and conditions. To illustrate the benefit of using SDN concept for the MEC framework, we present the details of software architecture as well as performance evaluations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have