Abstract
Phase-locked loops (PLLs) employing LC-based voltage-controlled oscillators (LC VCOs) are attractive in low-jitter multigigahertz applications. However, inductors occupy large silicon area, and moreover dense integration of multiple LC VCOs presents the challenge of electromagnetic coupling amongst them, which can compromise their superior jitter performance. This paper presents an analytical model to study the effect of coupling between adjacent LC VCOs when operating in a plesiochronous manner. Based on this study, a low-jitter highly packable clock synthesizer unit (CSU) supporting a continuous (gapless) frequency range up to 5.8 GHz is designed and implemented in a 65 nm digital CMOS process. Measurement results are presented for densely integrated CSUs within a multirate multiprotocol system-on-chip PHY device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.